
Cubes All The Way Down

Renaud Bédard
Programmer, Polytron

About Me

● Started 3D programming in VB6 & Truevision3D ~ 2001

● Started working with Phil Fish on FEZ in April 2007

● FEZ gets 2 noms and 1 win (Visual Arts) at IGF'08

● Bacc. in Computer Science at UQÀM in late 2008

● Worked full-time since then at Polytron
● FEZ is first commercial title and full-time “industry” “job”

About FEZ

● 2D/3D Exploration Puzzle Platformer (“mystroidvania”)

● Pixel art where the pixels are 3D trixels

● Platforming in 2D, but across all 4 orthographic views

● Built in XNA/C# from the start
● Spanned 5 XNA versions, from 1.0 to 3.1!

Game Footage

World Structure
● Big branching mess, 157 areas total

● Each is an isolated level

● But level transitions are made “seamless”

How are levels “cut up”?

● Art- and level-production wise, tiles are easier

● Plain old 2D tilemap doesn’t work : we need 3D tiles

● …triles?

● 16x16x16 voxels (trixels) chosen as an arbitrary fixed size

“Nature” Trile Set (302 triles)

Texturing Triles

● Per-trixel coloring?

● Implies good integrated painting tools

● Cubemaps! (freebloods)

● Triles need to be convex

● Cubemaps are 16x16x6 32bpp = 6kb uncompressed!

Modelling Triles

● First trile concepts made in Google Sketchup (2007)

Trile Sculpting

Blocky But Detailed

● Average of 136 polygons per trile

● Typical scene : 50,000 polygons
● But anywhere from ~5000 to ~250,000

Mesh Simplification
● Extrapolate contiguous surfaces from trixels

● For each surface,

● Enumerate biggest rectangles in that surface

● Each rectangle becomes a plane

Building Levels in “Fezzer”

Completed level in final Fezzer

Building Fezzer...

Feature tracking
● Google Docs all the way!

● Sprints planned 1 week to 1 month ahead
● Do basic feature first, revisit & polish later

Designer vs. Programmer Dynamic

● Phil dictated design, but I implemented
● As the programmer, YOU know what’s possible

● Time-wise, performance-wise, and in regards to your abilities

● You can always say no, but it’s a discussion
● FEZ is a “game d’auteur”, designer associates with it deeply

● It’s all about mutual respect

A note on Version Control

● Holy shit you guys, use version control.

● Used local NAS with batch file madness for whole 2009
● Lost content, overwritten files, flaky backups

● “I’m just one guy” and “I have infinite undo levels” are not good
reasons

● Remote SVN/Git/Hg servers are cheap, and they WILL save your ass

Thanks Nathan @ Capy for convincing us to make the jump!

How do we draw all that stuff?
● Lots of tiny blocks

● Geometry gets pretty dense

● Potentially lots of overdraw in 2D views

● Ideally 60 FPS on Xbox 360

 By culling and batching efficiently

Rendering Triles : Culling

● Orthographic views, usually looking into an axis
● Peel the frontmost layer(s)

● At most two layers if mid-rotation

● Cull within view frustum

● When moving, only invalidate triles
for the screen’s moving border

(don’t recull everything unless necessary)

How Culling Works

● Cell content is cached

● For each screen cell
− Start at camera depth

− Mark trile to be drawn

− Walk into screen

− Stop at solid,
non-seethrough &
non-offset trile

Culling Disabled

Culling Enabled (~3X less triles)

Rendering Triles : Batching

● Draw calls are expensive

● All triles are independent (so indie)

● Can’t just throw everything at the GPU

 Batching is a must

● But dynamic culling means dynamic batching...
● Is there a simple way?

Rendering Triles :Batching Instancing

● Lots of instances of a single trile type in a level

● Few things specific to an instance
● XYZ Position, Y rotation : 4 single-precision floats

● vfetch instancing on Xbox 360
≈ Shader Model 3.0 Hardware Instancing on PC

● Max. 256 instances of the same trile per draw call

How-to : GPU Instancing (Xbox)

● A static vertex buffer

● Vertex data of the template trile (lightweight)

● A dynamic index buffer

● One set of indices for each instance

● Offset indices as if you’d have as many clones in vertex buffer

● An instance data buffer

● Actually a 4D vector or 4x4 matrix array in vertex shader constants

● Contains the instance-specific data

Xbox Instancing Vertex Shader
int vertexIndex = mod(IN.Index, VertexCount); // Index is an automagic vertex input semantic

int instanceIndex = IN.Index / VertexCount; // VertexCount is uniform parameter fed by app

asm

{

vfetch position, vertexIndex, position0

vfetch normal, vertexIndex, normal0

vfetch textureCoordinate, vertexIndex, texcoord0

}; // vfetch magic gets appropriate vertex data

float4 InstanceData = InstanceDataArray[instanceIndex];

float sinPhi, cosPhi;

sincos(InstanceData.w, sinPhi, cosPhi); // W component contains Y-axis rotation angle

float4x4 instanceMatrix = // Recompute instance transformation matrix

{

cosPhi, 0, -sinPhi, 0,

0, 1, 0, 0,

sinPhi, 0, cosPhi, 0,

InstanceData.xyz, 1

};

Other Stuff : Planes/Decals

● Where sclupting doesn’t matter, or sprite animations

Other Stuff : Art Objects
● For small overlapping details, or unique bigger landmarks

DOT the Tesseract
● 4D hypercube fairy

● Continually rotates about the X-W plane
● Done in C# (on the CPU)

● 4x4 matrix works for rotation

● Faux 4D to 3D projection
● Further out in W axis = smaller in 3D

● Rendered in orthographic projection
like everything else

● 96 vertices, 144 triangles
(no intersection in 4D space)

Collision Management
● Triles are the collision map

● Each trile has a type
● Can be per-face too!

● Four types
● Immaterial (blades of grass)

● No collision (background elements)

● Top-collide (most platforms)

● All-collide (blocking boundaries; rare)

Invisible Collision Triles

● Art objects need to collide too

● But they’re not made of triles!

● Filled with invisible triles

● No collision, or

● Top-only collision

Collision Lookup
● Similar as the culling process

● Collide with what you see!

● Peel back from view

● Keep peeling back if hitting
● Immaterial triles (i.e. grass strands)

● Non-grid-aligned triles

Otherwise, point-to-line with first
solid trile edge found (three points),
one axis at a time.

Non-Grid-Aligned?

● Triles can be moved arbitrarily
● Stored in cell that contains its center

● Collision tests look up neighbours
● Only one, away from cell’s center

● Only if no hit in current cell

● Once found, point-to-line
(using appropriate size & offset of the trile)

Tests...
● Scaling can also be

arbitrary

● As long as triles are
no smaller than half
of Gomez’s size

(limitation of using

point collision)

How Gomez moves around

● Movement is along on the view plane

● Depth correction rules
- Gomez should stay visible, always

- Gomez should never walk in mid-air

● Otherwise, don’t touch his depth

● During view rotations, movement & time are suspended

Background Mode

● If Gomez is behind the level post-rotation
● IGF’08 build : Panic & QTE!

 Stressful, kills the mood, generally dumb

 Final build
● Silhouette rendering

● Low-pass music

● Limited actions

Lighting Pre-Pass
● Per-face direct/diffuse light

● Ambient light = sky background color

● Cloud shadows end up blueish

● Shadows and additional lights added
(in screen-space)

● All done in a lighting pre-pass

● Blended in Modulate2X mode

● so that it can light up and shadow

Time Of Day Lighting

World Interactions
● Gomez can :

● Grab/push/pull objects

● Rotate parts of the world independently

● Make blocks crumble under his weight

● Grab ledges all around platforms

● Interact with one-off puzzle objects

● Swim in water & drown in toxic liquids

● AND MUCH MUCH MORE

● 56 different “action classes” control his behaviour

Action “Classes For States”
● All player action classes derive
from a base abstract class

● Not all mutually exclusive

● “Fall” is an action that is
evaluated as long as there’s
gravity

● They know how to chain from
state to state

protected virtual void TestConditions()
{
}

protected virtual void Begin()
{
}

protected virtual void End()
{
}

protected virtual bool Act(TimeSpan elapsed)
{

return false;
}

Example : WalkRun.cs
protected override void TestConditions()
{

switch (PlayerManager.Action)
{

case ActionType.Sliding:
case ActionType.Idle:
case ActionType.Teetering:
case ActionType.Grabbing:
case ActionType.Pushing:
case ActionType.LookingAround:

// If grounded and pressed movement keys
if (PlayerManager.Grounded && InputManager.Movement.X != 0 &&

PlayerManager.PushedInstance == null)
{

PlayerManager.Action = ActionType.Walking;
}
break;

}
}

Example : WalkRun.cs
protected override void IsActionAllowed(ActionType type)
{

return type == ActionType.Running || type == ActionType.Walking;
}

protected override bool Act(TimeSpan elapsed)
{

// Transform input to physics impulses in a helper class
MovementHelper.Update((float)elapsed.TotalSeconds);

if (MovementHelper.Running)
PlayerManager.Action = ActionType.Running;

else
PlayerManager.Action = ActionType.Walking;

}

Additional Flags for Actions
public static class ActionTypeExtensions
{

public static bool IsAnimationLooping(this ActionType type)
{

switch (action) { /* ... */ }
}

public static bool DisallowsRespawn(this ActionType type)
{

switch (action) { /* ... */ }
}

public static bool PreventsRotation(this ActionType type)
{

switch (action) { /* ... */ }
}
/* ... */

}

Actors : Dynamic World Entities
● Spinning blocks, moving platforms, ladders, interactive structures, etc.

● Hardcoded behaviours with flags or parameters set in the editor

● Tradeoff for not having proper scripting support

Scripting System
● Designer-friendly UI (no code!)

● Event-based

Script Editor

● Triggers

● Conditions

● Actions

● And lots of WinForms
controls

Script Example : DOT interaction
● Warn the player of a particular mechanic in a level using DOT

When Level Starts, (Start event on Level static entity)

(blocking actions executed in sequence)

● Remove player controllability

● DOT says a couple lines

● Move the camera to Volume #3 (point of interest)

● DOT says more stuff

● DOT comes back and hide

● Player regains control

This script happens once in the game :

Scripting Interfaces
[Entity(Static = true)]
public interface ILevelService : IScriptingBase
{

// Events, for triggers
[Description("When the level starts")]
event Action Start;
void OnStart(); // Called by the engine to trigger the event

// Properties, for conditions
bool FirstVisit { get; }

// Operations, for actions (can be running over time à la coroutine)
[Description("Smoothly changes to a new water height")]
LongRunningAction SetWaterHeight(float height);

}

Level Format

● At design-time, serialized from objects to SDL
● Similar to YAML or JSON, but better integrated with .NET

● Tweakable by hand

● Error resilient
● Ignores unknown elements

● Elements can be marked as optional

● At compile-time, binary format for performance & filesize
● No automatic serialization, reflection is too slow on Xbox

SDL Looks Like This
● Output much more concise than
equivalent XML serialization

● Serialization tags in data objects

level type="FezEngine.Structure.Level, FezEngine" {
name "ARCH"
startingPosition {

face "Front"
id 16 6 5

}
size 30F 49F 35F
baseDiffuse 1F
baseAmbient 0.35F
haloFiltering true
blinkingAlpha false
waterHeight 11F
skyName "WATERFRONT"
trileSetName "Untitled"
volumes {

volume key=0 {
orientations "Front"
actorSettings {

farawayPlaneOffset 5F 1F
}
from 3F 26F 15F
to 4F 28F 16F

}

public string Name { get; set; }

public TrileFace StartingPosition { get; set; }

public Vector3 Size { get; set; }

[Serialization(Optional = true)]
public float BaseDiffuse { get; set; }

[Serialization(CollectionItemName = "Trile")]
public Dictionary<TrileEmplacement, TrileInstance> Triles;

Music System
● Written on-top of XACT

● Allows infinite, dynamic track-based songs

● Scriptable
● Level/player events can mute/unmute tracks

● Works with time of day

Music System In Action
● “Puzzle-solving music” @ daytime

● Night is less dense, very different sounding and still randomized :

Track Initial Delay Duration Inter-Play Delay

Main Arp None 8 bars [0, 16] bars

Counter Arp 4 bars 8 bars [0, 16] bars

Ostinato 8 bars 4 bars [0, 16] bars

Bass 8 bars 4 bars [0, 24] bars

Antecedent 16 bars 3 bars [0, 16] bars

Triplets 16 bars 9 bars [0, 16] bars

Consequent 20 bars 3 bars [0, 16] bars

Xbox-specific Optimization
● XNA on the Xbox 360 = .NET Compact Framework

● Garbage collection every 1Mb allocated, unpredictable, blocking

● Rules of thumb : avoid LINQ, dynamic allocations

● Draw calls are expensive : batching is essential, instantiate ALL THE THINGS

● Defer as many operations as possible to vertex shaders instead of CPU

● Otherwise, multithread; 5 cores at your disposal

● HDD access is slow, flash memory access is worse!
● Pre-load all content, avoid disk access later on

● You probably have more RAM than content (in FEZ, totally)

Tools : CLR Profiler
● Excellent, free memory profiler

● Allocations graphs, memory usage by class

● Good for identifying real-time garbage & why load-times stall

Tools : CPU Profiler
● Any one you want (AQTime, dotTrace...), but I like ANTS Performance Profiler a lot

● Absolutely essential for finding bottlenecks

Tools : Analyzing Memory Profiler

● CLR Profiler is good for garbage generation, but isn’t very helpful for leaks

● I used the
SciTech .NET Memory Profiler

● Heap snapshot comparisons

● Insight on possible problems

● Leaky objects are identified
and their creation point given

XDK Tools
All other tools worked with a PC build; what if stuff only happens on Xbox?

● xbWatson
● Make your own measurements and output to console

● PIX
● Frame-by-frame teardown of what’s costly

● Excellent for inspecting the draw calls & shaders

● CPU Performance Profiler in the XDK ultimately useless

● Made for native code, not .NET games

XNA on XBLA : My Experience
● Long dev cycle meant struggle with upgrades

● No native library allowed, only .NET : can be problematic

● Some boilerplate TCR stuff handled, but still a lot to think about

● No symbols for debugging .NET assemblies in Release builds

But...

● .NET, C#, XNA and WinForms make engine & tools dev way easier

● Transition from PC to Xbox all in all fairly painless

● It’s all about comfort : I couldn’t have done FEZ in C++

A lesson is learned...?
● I don’t think there’s a way around it : a first game is HARD to finish

● Especially if you care a lot about it

● And let’s face it, FEZ is a huge game

● Early showing was a double-edged sword
● But later PAX/Fantastic Arcade showing were great motivators & feedback tools

● Feature creep, constant feeling that finish line is 3-6 months away
● Making short-form “game jam” games helped learn scope control

If I had to do it again...

● Use middleware (Unity?), or hire an engine programmer

● Have real scripting support and educate artists about it

● Hot-reloadability of scripts and content edits
● Even if C# compilation is fast, back & forth is huge waste of time

● Don’t be afraid to scrap prototype code
● 4-year-old bugs coming back to haunt you : it sucks

● Realize you’re doing a big, long project, and that it’s worth the effort

That’s all, folks!

● Thanks for coming!

● Questions?

