
Cubes All The
Way Down

FEZ Technical Post-Mortem
By Renaud Bédard, Programmer (Polytron)

About Me

• Started messing with 3D programming in VB6 &
Truevision3D around 2001

• Started working with Phil Fish on FEZ in April 2007

• FEZ gets 2 nominations and 1 award (Visual Arts) at IGF'08

• Bacc. in Computer Science at UQÀM in late 2008

• Worked full-time since then at Polytron to make the game
• FEZ is first commercial title and full-time “industry” “job”

• 2D/3D Exploration Puzzle Platformer
(“mystroidvania”)

• Pixel art where the pixels are 3D trixels

• Platforming in 2D, but across all 4 orthographic
views

• Built in XNA/C# from the start
– Spanned 5 XNA versions, from 1.0 to 3.1!

Long Screenshot

How is the world “cut up”?

• Art and level production-wise, easier to work
with tiles

• Plain old 2D tilemap doesn't work : we need
3D tiles
– ...triles?

• 16x16x16 trixels chosen as an arbitrary fixed
trile size

Nature Trile Set (302 triles)

Texturing Triles

• Per-trixel coloring?

– Implies good painting tools in modeler

• Cubemaps! (freebloods)

– Triles need to be convex

– Cubemaps are 16x16x6 32bpp = 6Kb uncompressed!

Modeling Triles

• First trile concepts made in Google Sketchup

Modeling Triles

• Trixel sculpting
– Push trixel faces in, pull faces out

– Adaptative geometric complexity

Modeling Triles

• And things can get pretty complex

Mesh Simplification

• Extrapolate contiguous surfaces from trixels

• For each surface,

– Enumerate biggest rectangles in that surface

– Each rectangle becomes a plane

• Triles have an average of 136 polygons

• Typical scene : 50,000 polygons on-screen

– Goes from anywhere from 5000 to 250,000

Building Levels in “Fezzer”

Rendering Triles : Culling

• Orthographic views

– Peel the frontmost layer

– Keep offset and see-through triles

• During rotation transitions

– Peel the two visible faces

• Always use frustum culling

– Only cull the difference, leave what’s still visible there

Culling Disabled

Culling Enabled

Rendering Triles : Instancing

• Lots of instances of the same trile in a level

• Few things specific to a single instance

– XYZ Position, Y Rotation : 4 floats

• vfetch Instancing on Xbox 360
≈ SM 3.0 Hardware Instancing on PC

• Max. 226 instances of same trile per draw call

Instancing shader details

• Instance data passed as VS constants
#define InstancesPerBatch 226

float4 InstancePositionPhiArray[InstancesPerBatch] : register(c30);

• Reconstruct transformation matrix in VS
float sinPhi, cosPhi;

sincos(InstancePositionPhi.w, sinPhi, cosPhi);

float4x4 instanceMatrix =

{

cosPhi, 0, -sinPhi, 0,

0, 1, 0, 0,

sinPhi, 0, cosPhi, 0,

InstancePositionPhi.xyz, 1

};

Other World Objects :
Planes/Decals

• Where sculpting doesn't matter, or sprite animations

Other World Objects :
Art Objects

• For small overlapping details, or unique bigger landmarks

Collision Management

• Triles are the collision map

• Four types
– Immaterial (e.g. blades of grass)
– No collision (background elements)
– Top-collide (most platforms)
– All-collide (blocking boundaries)

Invisible Collision Triles

• Art objects are filled with invisible collision triles

Collision Lookup

• Level is a large structure of triles indexable by (x, y, z)
– Actually a Dictionary<Int3, Trile>

• You collide with what you see
– Get closest (x, y) or (z, y) row of triles
– Traverse to nearest collideable trile and use its properties

• Gets tricky with offset triles
– Look up 4 closest neighbour rows and test

• After that, normal AABB to line collision resolution

Offset/Non-Unit Triles

How Gomez Moves Around

• Movement is in 2D according to the current viewpoint.

• When the camera rotates, movement (and time) is
suspended.

Depth correction

• Gomez should stay visible at all times
• Gomez should never walk in mid-air

Otherwise, don't change Gomez's depth arbitrarily

Background Mode

• If Gomez is behind geometry after a rotation,
don't panic!

– Silhouette rendering

– Low-pass music

– Limited actions

Lighting

• Per-face direct/diffuse light

• Ambient light based on sky background color

– Also tints transparent cloud layers

• Shadows and additional lights added in screen-space

• All done in a lighting pre-pass (render-to-texture)

– Blended in Modulate2X mode so that it can light up and shadow

Time of Day Lighting

Dynamic World Interactions

• FEZ @ IGF’08 was 99% static

• Now Gomez can :
– Grab/push/pull objects
– Rotate parts of the world independently
– Make blocks crumble under his weight
– Grab ledges all around platforms
– Interact with one-off puzzle objects
– Swim in water & drown in toxic liquids
– AND MUCH MUCH MORE!

• 56 different action classes control his behaviour

Action “Objects For States”

• All player action
classes derive from a
base abstract class

• Not all mutually
exclusive
– “Fall” is an action that

is evaluated as long as
there’s gravity

• Tied to sprite
animations, player
controllability, etc.

protected virtual void TestConditions()
{
}

protected virtual void Begin()
{
}

protected virtual void End()
{
}

protected virtual bool Act(TimeSpan elapsed)
{

return false;
}

Dynamic World Entities =
Actors

• Spinning blocks, interactive structures, etc.

• Hardcoded behaviours with flags or parameters set
in the editor

• Tradeoff for not having proper scripting support

Scripting System

• Designer-friendly UI (no code!)

• Event-based (no continuous evaluation)

• Extensible and backwards-compatible

Final Script Editor UI

...is scary.

Serialized Scripts

• Scripts are objects, serialized as
text inside the level file

• Tweakable by hand
– If you are careful with braces

• Probably should’ve written a
better formatter like :

script key=0 {

name "Untitled"

triggers {

trigger {

event "Start"

object {

type "Level"

}

}

}

actions {

action {

operation "SetPixelsPerTrixel"

arguments "2"

object {

type "Camera"

}

}

}

}

script key=0 {

code “Level.Start =>
Camera.SetPixelsPerTrixel(2)”

}

Scripting Interfaces

• Reflected by the editor to fill dropdowns

[Entity(Static = true)]
public interface ILevelService : IScriptingBase
{

// Events
[Description("When the level starts")]
event Action Start;
void OnStart(); // Called by the engine to trigger the event

// Properties
bool FirstVisit { get; }

// Operations
[Description("Smoothly changes to a new water height")]
LongRunningAction SetWaterHeight(float height);

}

Music System

• Written on-top of XACT

• Allows dynamic track-based songs

• Works with time of day

• Horribly intricate and complicated,
as requested by Disasterpeace!
– ...but allows for kickass songmaking

Xbox 360 Optimizations

• XNA on the Xbox 360 = .NET Compact Framework
– Garbage collection every 1Mb allocated, unpredictable,

blocking
– Draw calls are expensive : batching is essential, instantiate

ALL THE THINGS
– Defer as many draw calculations as possible to vertex

shaders instead of CPU
– Otherwise, multithread; 5 (slow) cores at your disposal

• Lots of content on the Web about this
– ...especially since XBLIG games have the same issues
– Rules of thumb : avoid LINQ, dynamic allocations

Tools : CLR Profiler

• Excellent, free memory profiler

• Allocations graphs, memory usage by object

• Good for identifying real-time garbage & why load-times stall

Tools : CPU Profiler

• Any one you want (AQTime, dotTrace...)
– I like ANTS Performance Profiler a lot

• Absolutely essential for finding bottlenecks

Tools : xbWatson, PIX

• Come with the Xbox Development Kit

• xbWatson
– Make your own measurements and output to debug

• PIX
– Frame-by-frame teardown of what’s costly
– Excellent for inspecting the draw calls & shaders

• CPU Performance Profiler in the XDK ultimately not
that useful
– Made for native code, not .NET games

WHAT TOOK YOU SO LONG?

• Game started in April 2007

• Still in QA in November 2011

• What the hell is going on??

Timeline

• 2007 : Groundwork, engine, editor, “level one”
– ...for the IGF’08 prototype, eventually scrapped (built in 100 days)

• 2008 : Celebration, setting up Polytron, art re-draw, engine work
while finishing studies, more scrapped levels

• 2009 : Full-time work begins, world design, art & more engine work

• 2010 : Design dialogue with Microsoft, internal drama, DOT and
world map come in, BMcC & Disasterpeace come in (October)

• 2011 : Puzzle & cutscene work, more levels, QA, optimization and
polishing

That’s all, folks!

• Thanks for coming!

• Questions?

