
Inspirational tools for the
technically minded

Renaud Bédard

¡Hola!

I’m Renaud.
You may remember me from such games as…

By the way…

• Watch Ken Perlin’s talk, especially the stuff on
his visual programming system

http://bit.ly/kenperlin_cdm

I spend 99% of my time working in
something that looks like this

Lately I’ve been toying with…

And it feels kinda nice!

• Leave the world of algorithms and systems, but not
completely

• The same engineering reflexes applied to other
domains

• Get shiny, inspiring results… fast!

• And learn about different technologies along the way

• Magnetized LEGO-like modules

• Quick and easy way to prototype electronic circuits

• Can be a learning tool

• Growing module library

• Sensors, light, sound…

• Even a dev kit to make
your own modules!

Electronics without the hassle

(this scares me too)

"But why should I care?"

• Similar to node-based programming

• Can make you interested in signal processing

• Can be your first step into electronics and embedded
systems programming

• A rare glimpse into the analog world

How I got into it

Modular synthesizers

Zero-risk

• This will not blow up

• Neither will this!

• This probably would
– But it won’t let you do it,

because magnets

The basics

Power source
(USB or
 9V DC source)

Sound input or generator
(or any combination of other bits)

Output (speaker)

Oscillator

• The oscillator bit has 2 modes

– Square

– Sawtooth

To make things more interesting…

Envelope for pseudo
ADSR control

Delay for some nice
sound reverberation

A resonant low-pass
filter with an input for
the cutoff frequency

Gating, tone control and sequencing

4-step sequencer with per-step tone control
(can be fed a step, or run with an internal clock)

A variety of sensors and buttons
(light, pressure, bend, switch…)

Even a cute little one-octave keyboard!

Go wild!

• If you feed an oscillator to another oscillator,
the first oscillator oscillates the tone of the
second
– You’ve just made an FM synth!

• Depending how you order your bits, you can
control tone, amplitude, filter cutoff...

– The only rule : respect polarity

The fun part
(TB-303 style acid filter)

CV

The fun part, part dos
(8-step sequencer)

0V

 -V

 +V

Speaker

step
step *step*

And you could also…

• Use a sawtooth oscillator to do kick drum sounds

• Use a sharp envelope on a noise sample to get a hi-hat

• Drive a filter to self-oscillation and get a sine oscillator

• Use an inverter as a bitcrush/distortion effect

Projects can be shared on the littleBits website

But wait, there’s more!

It’s programmable!

+

• 16Mhz, 2.5KB RAM, 32KB flash memory

• Programmed in AVR C++, through the Arduino IDE

• Interconnects with any and all littleBit modules

(micro-USB)

Arduino Sketches

• API and code flow inspired by Processing

 // sketch-global variables go here

void setup() {
 // one-time initialization
}

void loop() {
 // main loop, runs in real time as fast as possible
 unsigned long timeSinceStarted = millis();

 int digitalInput = digitalRead(0); // digital, 0 (false) or not 0 (true)
 int analogInput = analogRead(0); // analog, 10-bit resolution (0 to 1024)

 digitalWrite(1, 1); // digital output to pin 1
 analogWrite(5, 128); // analog output, 8-bit resolution (0 to 255)
}

So what do I do with it?

• Use the dimmer and slide dimmers to control input values

• Use the onboard memory to record/playback stuff

• Anything you can think of, really

…or connect it to a computer and
use it as a controller!

– Using Serial.write() and
Serial.read()
(through a COM port)

Demo time!

• Common ground to write & share pixel shaders on the Web
• Learn from genius-level graphics programmers from around

the world

The challenge :
– No geometry

• Only a fullscreen quad

– Limited set of input textures
– Very limited external state

• Keyboard, mouse, time, resolution

– No persistence of state between
frames
• Everything is computed all the time

Pixel Shaders, eh?

• A "simple" program that runs
for every pixel rasterized by the
past stages
– Input

• Parameters via host application
• Interpolated vertex shader output

– Output
• Usually color (at least 1 target)

• Evaluated in a vacuum; no
knowledge of neighboring
pixels
– Massively parallel as a result

Learning with Shadertoy

• It’s real-time!
ALT+ENTER to compile & commit changes

• Syntax highlighting and inline error log

• GLSL Cheat Sheet
one click away

Baby’s first Shadertoy

void main(void)

{

 vec2 uv = gl_FragCoord.xy / iResolution.xy;

 float t = 0.5 + 0.5 * sin(iGlobalTime);

 gl_FragColor = vec4(uv, t, 1.0);

}

time

Next up : Fractal Noise

• Good old Photoshop Clouds

• A simple yet interesting procedural effect to get started

1. 2D Noise Function

• There is no PRNG on a GPU …but we can simulate one!
Keep the fractional part of a rapidly changing, irregular function

float random(vec2 point)
{
 float value =
 sin(dot(point,
 vec2(12.9898, 78.233))) *
 43758.5453;

 return fract(value);
}

2. 2D Value Noise

• Returns a smooth, continuous noise function
by using bilinear interpolation on discrete samples of the 2D noise function
…basically, zooming into it

#define V2_X vec2(1.0, 0.0)
#define V2_Y vec2(0.0, 1.0)

float valueNoise(vec2 point)
{
 vec2 integer = floor(point), remainder = fract(point);

 mat2 columns = mat2(
 random(integer), random(integer + V2_X),
 random(integer + V2_Y), random(integer + 1.0));

 vec2 row = mix(columns[0], columns[1], remainder.yy);
 return mix(row[0], row[1], remainder.x);
}

3. Fractal Iteration

• Accumulate value noise samples,
each iteration halving weight and doubling detail

#define OCTAVES 16

float fractalNoise(vec2 point)
{
 float result = 0.0;
 float contribution = 0.5;

 for (int i = 0; i < OCTAVES; i++)
 {
 result += valueNoise(point) * contribution;
 contribution /= 2.0;
 point *= 2.0;
 }

 return result;
}

3.1. Fluffier Clouds! FLUFFIER!

• Rotating at every iteration by an irregular amount
hides the repeating diamond pattern

#define DEG_TO_RAD 0.0174532925
#define sind(x) sin(DEG_TO_RAD * x)
#define cosd(x) cos(DEG_TO_RAD * x)
#define THETA 30.0

float fractalNoise(vec2 point)
{
 // ...
 mat2 rotationMatrix = mat2(cosd(THETA), sind(THETA),
 -sind(THETA), cosd(THETA));

 for (int i = 0; i < OCTAVES; i++)
 {
 // ...
 point *= rotationMatrix;
 }
}

We could go much further
(but in the interest of time…)

• Change the per-iteration contribution and get coarser or
smoother noise

• Use time (or mouse drag) to scroll the noise values on the
screen

• Use 3D noise and animate over time

• …calculate derivatives and transform to a normal map!

Okay, but… how do I do THAT?

iq’s "Canyon"

Approach #1 : Raytracing

• Remember : The shader encodes a function
describing the world/scene for a defined pixel

• The pixel can represent a ray that’s cast from the
camera in 3D space

Raytracing, continued

• Test every object in the scene for intersection

– Keep closest hit

• Return surface properties (color, normal, material)

• Bounce rays for reflection

• Regular lighting equations apply (accumulate lights)

• A bit too code-heavy for a PowerPoint slide

• Very clear implementation by McZonk :

http://bit.ly/Raytrace_ShaderToy

Caveats

• Looping through scene members is slow

– May need partitioning

• Limits possible shapes

– Ray-plane, ray-sphere, sure…

– For complex geometry, test every triangle…?

– Doing it properly is not a ShaderToy-sized problem

Approach #2 :
Raymarching Distance Fields

• Objects defined as distance functions

• How far is the object’s surface from point p?

CENTER

SURFACE

Raymarching, continued

• Iteratively get closer to intersecting surface

• Start at camera position, walk along ray direction

Image credit : RGBA demogroup, NVScene 2008 presentation

Constructing a scene

• Anatomy of a distance function
– Input : Position at which we are marching
– Input : Object parameters (dimensions, etc.)
– Output : Distance to the surface

float sphere(vec3 p, vec3 offset, float radius)
{
 return length(p - offset) - radius;
}

• To combine two distance functions, keep the smallest

distance!

Operations on distances

• Duplicate objects infinitely by
transforming the incoming position

vec3 q = mod(p, f) - 0.5 * f;

return shape(q /*, ... */);

• Boolean/CSG operations with
min() and max()

• Displace surfaces by simply
adding distances!

For more info…

• Lots of great raymarching building blocks on Iñigo
Quílez’s website :

http://bit.ly/iq_Raymarching

• Search for "raymarching" in ShaderToy

– Most 3D ShaderToys use that

I guess what I’m trying to say is…

• Play and code are not mutually exclusive

• Shaders are awesome

• You’re more creative than you think!

THANKS FOR LISTENING! <3
Questions?

